Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(8): 6333-6347, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349234

RESUMO

Dendritic cell (DC)-based vaccines have shown promise in adoptive cell therapy for enhancing the antigen-specific response of antitumor immunity. However, their clinical efficacy is limited by the less-presented tumor-associated antigens (TAAs) through MHC I and low lymph node homing efficiency. Herein, to address these issues, we rationally design and fabricate DC-based nanovaccines by coating Cu2-xSe nanoparticles (CS NPs) with the membrane of matured DCs (named as DCNV(CSD) nanovaccines). We reveal the important roles of CS NPs in the DCNV(CSD) nanovaccines from three aspects: (1) inducing the immunogenic cell death of tumor cells to expose abundant TAAs; (2) promoting the escape of TAAs from the lysosomes of DCs during the antigen presenting process through MHC I; (3) sustainably releasing traces of copper ions to promote the proliferation of T cells. Our DCNV(CSD) nanovaccines are characterized with high expressions of MHC I, CD80, CD86, CCR7, and ICAM-1 proteins, which not only endow them with abundantly processed specific TAAs, but also a strong capability of homing to the lymph nodes. The homing capability of our small DCNV(CSD) nanovaccines is better than that of matured DCs. More importantly, they can elicit the strong response of potent antispecific CD8+ T cells for antitumor immunotherapy, as tested in the treatment of highly invasive glioblastoma and highly metastatic melanoma. Additionally, DCNV(CSD) nanovaccines can generate memory T cells (TEM) in the spleen of mice to effectively prevent the recurrence of treated tumors. This work demonstrates a universal approach to fabricate high-performance DC-based nanovaccines for tumor immunotherapy by using versatile CS NPs.


Assuntos
Vacinas Anticâncer , Glioblastoma , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Nanovacinas , Neoplasias/tratamento farmacológico , Imunoterapia , Antígenos de Neoplasias , Glioblastoma/tratamento farmacológico , Células Dendríticas
2.
Artigo em Inglês | MEDLINE | ID: mdl-38418351

RESUMO

BACKGROUND AND AIM: The present study aimed to investigate whether the mitochondrial KATP channel contributes to angiotensin II (Ang II)-induced vascular dysfunction, the development of hypertension, and atherosclerosis. METHODS AND RESULTS: ApoE (-/-) mice fed a high-fat diet were chronically infused with Ang II for eight weeks and concomitantly treated with losartan (ARB), apocynin, or 5-hydroxy decanoate (5-HD), or 3-methyladenine (3-MA). Systolic blood pressure was measured, and pathological changes of aortic or liver tissue were observed. Nitric oxide (NO), superoxide dismutase 2 (SOD2) levels and vasorelaxation rate were measured, and protein and mRNA expressions were examined by western blot and RT-PCR. Ang II-induced development of hypertension was suppressed not only by ARB, and apocynin but also by 5-HD or 3-MA. Ang II infusion decreased aortic NO production and relaxation, as well as SOD2 activity in liver, which were improved by all treatments. In addition, Ang II-induced activation of autophagy was suppressed by 5-HD in aortic tissue, furthermore, Ang II increases the atherosclerotic index in plasma and exacerbates the development of atherosclerosis by increases of fat deposition in the aorta and liver. Lipid metabolism-related mRNA expressions (LXR-α, LDLR, SRBI, Acca, and FASN) were changed by Ang II. Similarly, not only ARB, and apocynin, but also 5-HD and 3-MA suppressed Ang II-induced these changes. CONCLUSIONS: Our present findings evidence that mitochondrial KATP channel-mediated autophagy contributes to Ang II-induced vascular dysfunction, development of hypertension, and atherosclerosis.

3.
Adv Healthc Mater ; : e2303276, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335143

RESUMO

Renal ischemia-reperfusion injury (IRI) is a common disease with high morbidity and mortality. Renal IRI can cause the disorder of immune microenvironment and reprograming the immune microenvironment to alleviate excessive inflammatory response is crucial for its treatment. Cytokine IL-33 can improve the immune inflammatory microenvironment by modulating both innate and adaptive immune cells, and serve as an important target for modulating immune microenvironment of renal IRI. Herein, we report that bilobetin-functionalized ultrasmall Cu2- x Se nanoparticles (i.e., CSPB NPs) can activate the PKA/p-CREB/IL-33/ST2 signaling pathway to regulate innate and adaptive immune cells for reprograming the immune microenvironment of IRI-induced acute kidney injury. The biocompatible CSPB NPs can promote the polarization of M1-like macrophages into M2-like macrophages, and the expansion of ILC2 and Treg cells by activating IL-33/ST2 to modulate the excessive immune inflammatory response of renal IRI. More importantly, they can rapidly accumulate at the injured kidney to significantly alleviate IRI. This work demonstrates that modulating the expression of cytokines to reprogram immune microenvironment has great potential in the treatment of renal IRI and other ischemic diseases.

5.
Biomater Sci ; 11(18): 6252-6266, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37534821

RESUMO

The complete treatment of high grade invasive glioblastoma (GBM) remains to be a great challenge, and it is of great importance to develop innovative therapeutic approaches. Herein, we found that GBM derived from U87 MG cells is a glutamine-addiction tumor, and jointly using glutamine-starvation therapy and photo-enhanced chemodynamic therapy (CDT) can significantly boost its therapy. We rationally fabricated tumor cell membrane coated Cu2-xSe nanoparticles (CS NPs) and an inhibitor of glutamine metabolism (Purpurin) for combined therapy, because glutamine rather than glucose plays a crucial role in the proliferation and growth of GBM cells, and serves as a precursor for the synthesis of glutathione (GSH). The resultant CS-P@CM NPs can be specifically delivered to the tumor site to inhibit glutamine metabolism in tumor cells, suppress tumor intracellular GSH, and increase H2O2 content, which benefit the CDT catalyzed by CS NPs. The cascade reaction can be further enhanced by irradiation with the second near-infrared (NIR-II) light at the maximum concentration of H2O2, which can be monitored by photoacoustic imaging. The NIR-II light irradiation can generate a large amount of reactive oxygen species (ROS) within a short time to kill tumor cells and enhance the CDT efficacy. This is the first work on the treatment of orthotopic malignant GBM through combined glutamine metabolism therapy and photo-enhanced CDT, and provides insights into the treatment of other solid tumors by modulating the metabolism of tumor cells.


Assuntos
Glioblastoma , Nanopartículas , Neoplasias , Humanos , Glioblastoma/tratamento farmacológico , Glutamina , Peróxido de Hidrogênio , Membrana Celular , Glucose , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Adv Sci (Weinh) ; 10(9): e2204961, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36698265

RESUMO

T cell dysfunction-induced tumor immune escape is particularly severe in glioblastoma (GBM), and significantly affects the efficacy of immunotherapy. It is crucial to innovatively reverse the T cell dysfunction for improving GBM immunotherapy. Herein, T cell dysfunction is remarkably reversed and immunotherapy of GBM is boosted by repurposing the U. S. Food and Drug Administration-approved antidepressant paroxetine (PX) with biomimetic nanoparticles (CS-J@CM/6 NPs). The PX is successfully applied to abrogate T cell sequestration in the bone marrow of GBM-bearing mice and increase their infiltration in tumor. The biomimetic NPs are composed of ultrasmall Cu2- x Se NPs, JQ1, and tumor cell membrane modified with CD6, and are efficiently delivered into tumor through the specific interactions between CD6 and activated leukocyte cell adhesion molecule. They ameliorate the T cell dysfunction through the double roles of loaded JQ1, which simultaneously decreases the expression of PD-1 and TIM-3 on T cells, and the expression of PD-L1 on tumor cells. The NP also induces the immunogenic cell death of tumor cells to activate immune response. The synergistic roles of PX and biomimetic CS-J@CM/6 NPs notably enhance the survival of GBM-bearing mice. This work provides new insights into tumor immunotherapy by repurposing "old drugs" with advanced NPs.


Assuntos
Glioblastoma , Nanopartículas , Animais , Camundongos , Biomimética , Glioblastoma/tratamento farmacológico , Imunoterapia , Paroxetina , Estados Unidos , United States Food and Drug Administration , Quinase 2 de Receptor Acoplado a Proteína G
8.
BMC Complement Med Ther ; 22(1): 147, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643519

RESUMO

AIMS: Gao-Zi-Yao has long been a unique way for treating various diseases. The present study is to explore the effect of Gao-Zi-Yao on learning and memory function in old spontaneous hypertensive rats (SHR) and its possible mechanism. METHOD: Male old SHR were received different doses of Gao-Zi-Yao for 4 weeks. Systolic blood pressure (SBP) and heart rate were monitored. Serum levels of nitric oxide (NO), interleukin (IL)-1ß, IL-2, and tumor necrotic factor (TNF)-α were measured. Morris water maze was performed to test the learning and memory function of the rats. Number of neurons in hippocampus was counted by Nissl staining. Western blot was applied to detect the expressions of learning and memory function related proteins, N-methyl-d-aspartate receptor 2B (NMDAR 2B), glutamate receptor 1 (GluR1), phosphorylated-calmodulin-dependent protein kinase II (p-CaMK II), and phosphorylated-cAMP responsive element-binding protein (p-CREB) in rat hippocampus. RESULTS: Data showed that Gao-Zi-Yao reduced SBP in old SHR, elevated NO level, and suppressed levels of IL-1ß, IL-2, TNF-α. The results of Morris water maze experiment showed that Gao-Zi-Yao dose-dependently improved learning and memory function. Number of neurons in the hippocampal dentate gyrus (DG) region of the old SHR was increased by Gao-Zi-Yao treatment. In addition, Gao-Zi-Yao elevated the protein expressions of NMDAR 2B, GluR1, p-CaMK II, and p-CREB in hippocampus. CONCLUSION: Gao-Zi-Yao decreases SBP and improves the learning and memory function of the old SHR by regulation of oxidative stress, inflammatory factors and neuron number in hippocampal DG area and the expression of learning and memory function related proteins.


Assuntos
Interleucina-2 , Memória , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/farmacologia , Hipocampo , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Aprendizagem , Masculino , Ratos
9.
Biomed Pharmacother ; 131: 110739, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32932045

RESUMO

AIM: The present study aims to investigate the antihypertensive effect and the underlying mechanism of GAO-ZI-YAO, one of the traditional Chinese medicines, in elderly spontaneous hypertensive rats (SHR). METHODS: 12-month-old male SHRs were randomly divided into five groups on the basis of treatment with different doses of GAO-ZI-YAO or angiotensin II receptor-1 blocker (ARB, Irbesartan) for four weeks. Systolic blood pressure (SBP), and serum levels of nitric oxide (NO), endothelin-1 (ET-1), angiotensin II (Ang II), vascular endothelial growth factor (VEGF), interleukin (IL)-1ß, IL-2, IL-6, and tumor necrotic factor (TNF)-α were measured. The pathological changes of ventricular muscle and thoracic aorta were observed by hematoxylin-eosin staining (H&E). RESULTS: GAO-ZI-YAO treatment reduced SBP in a dose-dependent manner accompanied by the inhibition of the development of cardiovascular remodeling. Although GAO-ZI-YAO treatment markedly increased serum levels of NO and suppressed serum levels of Ang II, this medicine did not affect the serum levels of ET-1 and VEGF. In addition, GAO-ZI-YAO also inhibited inflammatory response parameters (inflammatory cell infiltration in cardiac tissues and serum levels of IL-1ß, IL-2, IL-6, and TNF-α) in a dose-dependent manner. CONCLUSION: GAO-ZI-YAO exerts antihypertensive and anti-cardiovascular-remodeling effects in elderly SHR, which may be through regulation of NO, Ang II production, and inflammation.


Assuntos
Anti-Hipertensivos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipertensão/tratamento farmacológico , Medicina Tradicional Chinesa , Angiotensina II/sangue , Angiotensina II/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Citocinas/sangue , Medicamentos de Ervas Chinesas/farmacologia , Endotelina-1/sangue , Endotelina-1/fisiologia , Irbesartana/uso terapêutico , Masculino , Óxido Nítrico/sangue , Óxido Nítrico/fisiologia , Ratos , Ratos Endogâmicos SHR , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/fisiologia
10.
Biomed Pharmacother ; 111: 1005-1012, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841413

RESUMO

AIMS: This study investigated the effect of olprinone on ischemia-reperfusion (I/R) induced cardiac injury, and the underlying mechanism. MAIN METHODS: Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by 24 h reperfusion. After the start of reperfusion, rats were respectively treated with olprinone in three different dosages (0.2, 0.6, 2 mg/kg, intraperitoneal injection, i.p./12 h). Twenty-four hours later, a mean arterial pressure (MAP) heart function analysis system was used to monitor hemodynamic parameters; TTC staining method was used to detect the myocardial infarct size; 24-hour mortality of rats was recorded; western blot was used to detect the protein expressions of Caspase-3, Bax, Bcl-2, Beclin-1 and LC3-II/LC3-I. RESULTS: Cardiac function in I/R group was lower than that in sham group (dp/dt max: 1348.29 ± 266.01 vs. 3333.73 ± 1258.03, -dp/dt max: 1163.23 ± 588.18 vs. 3198.93 ± 1416.00, P < 0.05), which was significantly improved by treatment with high dosage of olprinone (dp/dt max: 1348.29±266.01 vs. 2022.43±493.39, -dp/dt max: 1163.23±588.18 vs. 1784.50±418.92, P < 0.05). The percentage of myocardial infarct size in medium and high dosages of olprinone group was lower than that in I/R group (42.67 ± 2.94, 22.33 ± 3.63 vs. 63.67 ± 5.86, P < 0.05). There was no significant difference in mortality among each group within 24 h. Compared with sham group, the expression of Caspase-3 was significantly up-regulated in I/R group (3.44±0.47-fold of sham, P < 0.05), which was inhibited by medium dosage of olprinone treatment (2.00±0.52-fold of sham, P < 0.05 vs. I/R group); also, expression of Bax was increased compared with sham group (4.06±0.25-fold of sham, P < 0.05), which was markedly inhibited by all dosages of olprinone treatment (low: 2.16±0.61-fold, medium: 2.74±0.66-fold, high 1.65±0.55-fold, P < 0.05 vs. I/R group). Expression of Bcl-2 was increased after I/R (1.17±0.06-fold, P < 0.05), which was further elevated in all dosages of olprinone treatment (low: 1.62 ± 0.13-fold, medium: 1.46 ± 0.13-fold, high: 1.82 ± 0.39-fold, P < 0.05 vs. I/R group). In addition, compared with sham group, the expression of Beclin-1 was up-regulated to 1.44±0.05-fold of sham in I/R group (P < 0.05), which was further increased in low and medium dosages of olprinone group (low: 2.46±0.44-fold, medium: 2.80±0.75-fold, P < 0.05 vs. I/R group). Moreover, expression of LC3-II was elevated in low dosage of olprinone treated group (low: 4.50±0.47-fold, P < 0.05 vs. I/R group). CONCLUSIONS: Olprinone improves the cardiac function in response to myocardial I/R injury by regulation of anti-apoptotic, pro-apoptotic. In addition, autophagic signal pathways may also play a role in olprinone's therapeutic effect.


Assuntos
Coração/efeitos dos fármacos , Imidazóis/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Piridonas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão/métodos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...